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Abstract-An electrocardiogram (ECG) compression technique
based on subband coding has been developed in this paper to
compare with compression techniques based on Wavelet Packets
(WP). The filter bank designed is a cosine-modulated pseudo-
QMF bank using the Kaiser Window Approach (KWA) method
that does not have the perfect reconstruction (PR) property, as
opposed to WP that are implemented by means of a PR filter
bank. In both schemes, the coding process is the same to be able to
compare the results. This is carried out using a very easy
algorithm based on a thresholding technique, which provides good
compression rate. Its main application is to encode long-term
registers of digitized electrocardiogram signal, in order to reduce
the bit rate. To preserve the reconstructed signal accuracy, the
percentage root-mean-square difference (PRD) is used as an
objective measurement parameter, which is selected before
compression. The tests have been done for the twelve principal
cardiac leads, and the compression degree measurement is
evaluated by means of the mean number of bits per sample
(MBPS) and the compression ratio (CR).
Key-Words - electrocardiogram (ECG), wavelet packets (WP),
QMF banks, PRD.

I. INTRODUCTION

In the last few years, many data compression techniques
have been developed to codify ECG signals. Most of them are
transform methods in which a data transformation is applied as
first stage to represent the input signal in the best way possible.
Thus, the correlation among resulting coefficients after
transforming original data is less. Therefore, the coefficients
can be quantized with different precision in a second stage. In
this context, the transforms based on the Discrete Wavelet
Transform (DWT) have given good results because of their
easy implementation and the quality of the recovered signal
when it is compared with direct compression methods. These
process directly digitized data taking advantage of redundancy
among samples. In this paper, two compression techniques are
compared. One of them is a transform method using WP. The
second one is based on subband coding by using conventional
cosine-modulated pseudo-QMF banks. By means of a filter
bank, the signal is split in the frequency domain obtaining
several subband signals, which contain the original information
but non-uniform distributed. The block diagram of subband
coding is similar to the previous one, but now, the first stage
has to be changed. It should be an M-channel cosine-modulated
filter bank and the response the set of subband signals. To be
able to compare the two methods, both of them must apply the
same compression scheme as well as the same procedure to
process the signal.

As well known, the purpose of the ECG signal compression
is to reduce the long-term register bit rate to solve storage and
transmission needs. The algorithm done in this work has been
developed to process the signal continuously without heartbeat
segmentation. As there is information loss, the quality of the
reconstructed signal has to be assured. The percentage root-

mean-square difference (PRD) is used as an accepted objective
measurement [1] to preserve the original waveform with a
degree of acceptable quality:
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II WAVELET PACKETS

Multiresolution analysis is a very important point of view to
understand and apply wavelet analysis [2]. Using this overall

theory, a function f(t) ∈ L
2
(R) can be represented as a

succession of approximation in several scales. Defining two
basic functions, a vector space is generated by scaling and
translating them ((2), (3)) to represent the signal: wavelet
function (Ψ(t)), which has the accurate details of the signal f(t),
is one, and scaling function (ϕ(t)), which offers a non
accurately approximation, is the other one:
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Combining both approximations, the function f(t) is exactly
obtained:
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In expression (4), two kind of coefficients, called Discrete
Wavelet Transform (DWT), are used as projections in the
vector space: the scaling coefficients cj0(k) which are coarse
details, and the wavelet coefficients dj(k) which are finer
details. The advantage of multiresolution analysis is that the
implementation algorithm may be achieved by means of a two-
order filter bank that has PR property and whose impulsive
responses h0[n] and h1[n] are low-pass and high-pass FIR
causal filters with cutoff frequency at π/2. This filter bank is
applied successively at the low-pass filter output, which
represents the coarse details. In this work, Daubechies filters
are used, which defined an orthogonal base.

The DWT can be generalized decomposing the high-pass
filter output too, that is, the finer details. In this way, we get a
binary tree filter bank with a level number dependent on
desired scale resolution (Fig. 1).

The binary tree can be considered as a library of bases
called the Wavelet Packets (WP) [3]. The purpose is to select
the best base to represent the signal in the best way pruning the
tree conveniently. This is done using some criterion to measure
the information cost of each node. In this paper, Shannon
entropy has been used [3]. Information cost must be compared
between the root or parent node and the sum of information
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cost of the following generations or children nodes in the
binary tree. The remaining branches are those with higher
value (Fig. 1).

Fig. 1. Three level WP filter bank. The number in each node is the Shannon
entropy. The dashed line are the discarded branches.

On the other hand, the input signal is processed taking
blocks of power of two consecutive samples. Each segment has
its best base, so each one is processed with different filter bank
structure. In order to recover the signal without information
loss, each segment has to be processed independently. This is
achieved taking the periodic extension of every segment and
calculating its coefficients by means of periodic convolution.
This is equivalent to considering each segment as a period of a
periodic signal. In this way, the same periodic signal, and
therefore the same segment, must be recovered applying the
corresponding synthesis filter bank.

III. M-CHANNEL MAXIMALLY DECIMATED FILTER BANKS

The M-channel maximally decimated filter banks with a
parallel structure have received widespread attention (see, e. g.,
[1] or [4] for a list of references). Pseudo-QMF banks can be
an alternative to perfect reconstruction systems, to avoid the
highly nonlinear optimization necessary to obtain the filter
coefficients. In cosine-modulated filter banks, analysis and
synthesis filters are cosine-modulated versions of a low-pass
prototype filter. The design of the whole filter bank thus comes
down to the design of the prototype filter.

Several methods have been proposed to facilitate the design
of the pseudo-QMF banks' prototype filter and to improve the
characteristics of the resultant system [4, 5, 6]. One of these
methods is the Kaiser Window Approach (KWA) to the design
of prototype filters of cosine-modulated filter banks [8]. The
design process of the prototype filter is the following. Let [ ]np

be a filter designed through Kaiser window technique. We

define ( )ωjeG as ( ) ( ) 2ωω jj ePeG = . In the KWA technique,

the design process of the prototype filter is reduced to the
optimization of the ideal filter cutoff frequency cω in order to
minimize the objective function given by

[ ]Mngmax
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Specially relevant for this work are the conventional
cosine-modulated pseudo-QMF banks [4, 7]. We have used
these kinds of filter banks for the purpose of dividing the
incoming signal into 16 separate subband signals. In
conventional modulation, the real coefficients impulse

response of the analysis [ ]nhk and synthesis filters [ ]nf k ,

10 −≤≤ Nn , 10 −≤≤ Mk , are given by
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In order to evaluate the quality of the resulting filter banks,
we can use several measures. We measure the peak difference
(maximum amplitude distortion) on the magnitude response of
the overall distortion transfer function ( )zT0 (Fig. 2), where
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Total aliasing error can be obtained using the aliasing function
( )zTal

(Fig. 3) [4, 8], where
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This function provides an accumulated measure of the
contributions from each one of the aliasing transfer functions.
The maximum value of the aliasing function ( )zTal

is useful in

order to measure aliasing distortion because it is the worst peak
aliasing distortion possible.

0 0.02 0.04 0.06 0.08 0.1 0.12
0.995

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

M
ag

ni
tu

de

Normalized Frequency

Fig. 2. ( )ωj
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IV. COMPRESSION SCHEME

As we have said before, the same compression idea is
applied to both coding techniques compared in this work. One
of them is a transform method where the transform used is the
WP using Daubechies filters. The output samples will be the
coefficients of the transform. The other one is based on
subband coding where the first stage is substituted by a pseudo-
QMF cosine-modulated bank. The output samples will be the
subband signals. The transform and QMF bank is followed by
two common stages: a quantizer and an entropy coder.

To calculate WP, the signal must be segmented into
consecutive blocks whose lengths are a power of two. The
same segmentation is applied to the compression based on
QMF bank.

On the other hand, the compression scheme is based on
previous works [9] where an ECG signal coding was designed
by using WP. The results were obtained varying four
parameters: the order of filters, the number of levels of the
decomposition tree, the length of signal segment and the PRD
value. To conclusion, good results were obtained for a filter
order 12 and no more than 4 layers of the decomposition tree.
Therefore, in this work, the WP are designed using 12 order
Daubechies filters and decomposition level up to 4.

The WP can be seen as a binary tree, which splits the
spectral domain by 16 when the decomposition level is up to 4.
Thus, the QMF bank selected to carry out the comparison with
the WP of 4 layers must be 16-channels. To calculate the order
of filters of 16-channel QMF bank, the nobles identities for
multirate systems have to be used [5] resulting in 156. In this
work, the order selected is not exactly the previous one because
of the design procedure. The final order chosen is 160. The
tests have been done with a cosine-modulated pseudo-QMF
bank designed by the KWA method, which is called
clkwa16161.

The quantizer designed for both methods is based on a
thresholding technique. Coefficients with amplitude less than a
certain value are discarded, that is, zero valued, maintaining
only the largest and assuring the quality of the reconstructed
signal with regard to the original. The reconstructed signal
quality is selected before the compression as a predetermined
PRD value. This is applied to each input segment.

For the entropy coder stage, a run-length coding is used as a
means to join the null samples. The non-discarded samples of
each segment processed are sent or stored without varying the
original precision. Since the previous section is a thresholding
technique, there will be unused codes in each set of samples
processed called escape codes. In this case, the threshold can
be used as an escape code to indicate the zero position. Two
samples must be included as a header in every segment: the
first will be a word indicating the beginning of the segment; the
second one the escape code of the current segment. The next
samples are the informative content of the segment. Non-
discarded samples are encoded with the original precision (16
bits) until a zero stream appears, which is indicated by the
escape code. Then, the number of consecutive zeros is encoded
with different precision. As the first step, with 4 bits when the
number of zeros are less than sixteen. The bit number '1111'
marks an overflow (more than fifteen consecutive zeros). In
this case, the zero stream is encoded with the previous 4 bits
plus a number of bits enough to complete the length of the
segment.

For the scheme based on WP, additional information must
be considered: the base used to decompose each segment. In a
binary tree library, the number of bases can be calculated
recursively [3] and in the particular case of 4 layers, there are
677 different bases. Therefore, maintaining a table with the
different kinds of decomposition tree, this information is
included as a 16 bit word in the header of run-length coding of
WP scheme.

V. RESULTS

The group of Electro-physiology Laboratory (Cardiology
floor) of the Hospital Gregorio Marañón of Madrid supplies us
the database used to carry out the test, which is composed by
the twelve standard leads. An atrial fibrillation is the pathology
contained in the database. Every lead is sampled at 360 Hz and
each sample is encoded in PCM with 16 bits per sample. The
results presented here have been obtained applying the
compression system to frames of each lead, which last 5
minutes each. Apart from the order of filters for both schemes
as well as the decomposition level for WP, there are still two
parameters free: the segment length to split the input signal and
the PRD value to select the quality of the recovered signal.

As we have studied on previous works [10] using a similar
compression technique based on WP, the compression ratio
were better by increasing the segment length from 128 to 2048
samples. This behavior has been the same with the run-length
coding designed in this article for the transform method. Using
the QMF bank, good results are obtained to segment length
from 512 samples. Therefore, the tests have been done to both
techniques taking block lengths of input signal from 512
samples to 2048.

Concerning the quality of the reconstructed signal, the PRD
is selected before compression to assure a final determined
accuracy. However, this performance measure is not enough. It
must be validated by visual inspection by a clinical expert.
After studying the bibliography regarding this subject ([1],
[10]) we have decided to select only PRD values from 0.5 % to
5%.

On the other hand, it is interesting to not forget that the
QMF bank used in this work does not have the property of PR
as opposite to WP. The quality of several recovered signals
without compression are shown in table 1. We note that
because another point of view from the mathematical theory of
wavelets is as filter bank theory where each output nodes may
be seen as subband signals.

The results of both compression schemes for the lead ARV
can be seen on Fig. 4 and 5 as a three-dimensional
representation for WP and for the cosine-modulated pseudo-
QMF bank clkwa16161 respectively. The MBPS is represented
as a function of PRD and the segment length. The compression
results are the mean compression value of all segments
processed except the last, which is zero padded before
compression to complete the segment length. The compression
depends on the segment length, specially when the WP
compression scheme is used, though the best results are for

TABLE 1
QUALITY OF RECOVERED SIGNALS WITHOUT COMPRESSION

Lead clkwa16161
I 0.3562

ARV 0.3586
V1 0.3626
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2048 samples. Comparing both sheets, the corresponding to
cosine-modulated pseudo-QMF bank (Fig. 5) is always lower
than the corresponding to WP (Fig. 4). This means that
compression by means of cosine-modulated pseudo-QMF bank
provides better results with the compression scheme applied in
this work. As a particular case, in Fig. 6, we can see both the
original lead ARV on continuous line and the reconstructed
version superimposed on dashed line for a PRD of 3 % and for
a segment length of 2048. The compression was done with the
clkwa16161 bank obtaining a CR of 11.50 (1.3913 MBPS)
whereas with WP, the CR was 10.26 (1.5595 MBPS)

VI. CONCLUSION

A transform method of ECG compression based on WP has
been compared to another one based on subband coding using a
cosine-modulated pseudo-QMF bank. The same compression
scheme was applied to both schemes. A lot of results have been
obtained as a function of the quality of reconstructed signal and
the segment length of input signal. In conclusion, the scheme
based on subband coding always provides best compression
degree. This one can be improved increasing the segment
length. The tests were done for the twelve cardiac leads and the
behavior of the system was the same for all of them, obtaining
similar results on the same conditions of compression.
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